Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7351, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446776

RESUMEN

Accurate assessment of cell stiffness distribution is essential due to the critical role of cell mechanobiology in regulation of vital cellular processes like proliferation, adhesion, migration, and motility. Stiffness provides critical information in understanding onset and progress of various diseases, including metastasis and differentiation of cancer. Atomic force microscopy and optical trapping set the gold standard in stiffness measurements. However, their widespread use has been hampered with long processing times, unreliable contact point determination, physical damage to cells, and unsuitability for multiple cell analysis. Here, we demonstrate a simple, fast, label-free, and high-resolution technique using acoustic stimulation and holographic imaging to reconstruct stiffness maps of single cells. We used this acousto-holographic method to determine stiffness maps of HCT116 and CTC-mimicking HCT116 cells and differentiate between them. Our system would enable widespread use of whole-cell stiffness measurements in clinical and research settings for cancer studies, disease modeling, drug testing, and diagnostics.


Asunto(s)
Holografía , Pinzas Ópticas , Estimulación Acústica , Biofisica , Diferenciación Celular
2.
Langmuir ; 32(44): 11532-11539, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27715067

RESUMEN

Many industrial and biological processes involve the competitive adsorption of ions with different valencies and sizes at charged surfaces; heavy and precious metal ions are separated on the basis of their propensity to adsorb onto interfaces, often as anionic ion clusters (e.g., [MClx]n-). However, very little is known, both theoretically and experimentally, about the competition of factors that drive preferential adsorption, such as charge density or valence, at interfaces in technologically relevant systems. There are even contradictory pictures described by interfacial studies and real life applications, such as chlorometalate extractions, in which charge diffuse chlorometalate ions are extracted efficiently even though charge dense chloride ions present in the background are expected to occupy the interface. We studied the competition between divalent chlorometalate anions (PtCl62- and PdCl42-) and monovalent chloride anions on positively charged amine-functionalized surfaces using in situ specular X-ray reflectivity. Chloride anions were present in vast excess to simulate the conditions used in the commercial separation of heavy and precious metal ions. Our results suggest that divalent chlorometalate adsorption is a two-step process and that the divalent anions preferentially adsorb at the interface despite having a charge/volume ratio lower than that of chloride. These results provide fundamental insight into the structural mechanisms that underpin transport in phases that are relevant to heavy and precious metal ion separations, explaining the high efficiency of low charge density ion transport processes in the presence of charge dense anions.

3.
Nanotechnology ; 25(45): 455301, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25327873

RESUMEN

Nanofluidic channels have promising applications in biomolecule manipulation and sensing. While several different methods of fabrication have been demonstrated for nanofluidic channels, a rapid, low-cost fabrication method that can fabricate arbitrary shapes of nanofluidic channels is still in demand. Here, we report a tip-based nanofabrication (TBN) method for fabricating nanofluidic channels using a heated atomic force microscopy (AFM) tip. The heated AFM tip deposits polymer nanowires where needed to serve as etch mask to fabricate silicon molds through one step of etching. PDMS nanofluidic channels are easily fabricated through replicate molding using the silicon molds. Various shapes of nanofluidic channels with either straight or curvilinear features are demonstrated. The width of the nanofluidic channels is 500 nm, and is determined by the deposited polymer nanowire width. The height of the channel is 400 nm determined by the silicon etching time. Ion conductance measurement on one single curvy shaped nanofluidic channel exhibits the typical ion conductance saturation phenomenon as the ion concentration decreases. Moreover, fluorescence imaging of fluid flowing through a fabricated nanofluidic channel demonstrates the channel integrity. This TBN process is seamlessly compatible with existing nanofabrication processes and can be used to achieve new types of nanofluidic devices.

4.
Anal Chem ; 86(16): 8368-75, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25066179

RESUMEN

Microcantilever stress measurements are examined to contrast and compare their attributes with those from in situ X-ray absorption spectroscopy to elucidate bonding dynamics during the oxygen reduction reaction (ORR) on a Pt catalyst. The present work explores multiple atomistic catalyst properties that notably include features of the Pt-Pt bonding and changes in bond strains that occur upon exposure to O2 in the electrochemical environment. The alteration of the Pt electronic and physical structures due to O2 exposure occurs over a wide potential range (1.2 to 0.4 V vs normal hydrogen electrode), a range spanning potentials where Pt catalyzes the ORR to those where Pt-oxide forms and all ORR activity ceases. We show that Pt-Pt surface bond strains due to oxygen interactions with Pt-Pt bonds are discernible at macroscopic scales in cantilever-based bending measurements of Pt thin films under O2 and Ar. Complementary extended X-ray absorption fine structure (EXAFS) measurements of nanoscale Pt clusters supported on carbon provide an estimate of the magnitude and direction of the in-operando bond strains. The data show that under O2 the M-M bonds elongate as compared to an N2 atmosphere across a broad range of potentials and ORR rates, an interfacial bond expansion that falls within a range of 0.23 (±0.15)% to 0.40 (±0.20)%. The EXAFS-measured Pt-Pt bond strains correspond to a stress thickness and magnitude that is well matched to the predictions of a mechanics mode applied to experimentally determined data obtained via the cantilever bending method. The data provide new quantitative understandings of bonding dynamics that will need to be considered in theoretical treatments of ORR catalysis and substantiate the subpicometer resolution of electrochemically mediated bond strains detected on the macroscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...